« Previous Next »

Box of VC10 Circuit Modules

Technical Information

Catalogue No: C1349
Category: Unknown
Object Type: Module/Sub-Assembly/Component
Object Name: Box of VC10 Circuit Modules
Part No: Many
Serial No: Many
Manufacturer: Elliott Bros (London) Ltd
Division: Unknown
Platform(s): BAC 1-11 , VC10
Year of Manufacture: circa 1968
Dimensions: Width (mm): 80
Height (mm): 90
Depth (mm): 400
Weight (g): 0
Location: R&S Display Cabinet
Inscription(s):

?

Notes:

This is a box of cards from the VC10 flight control system. The cards are:
SA-564-EA1 (Command Rate Limiter from the BAC1-11 'Amplifier Pitch and Computer')
SA-78-EB1 (Band Pass Filter used in the VC10 Lateral Amplifier and Flight Steering Computer);
SA-566-EA1 (Amplifier Isolation Switch from the BAC1-11 used in the Lateral Amplifier);
GL-16-EA2 (This is the 'Electro-Mechanical Computer from the BAC1-11 Amplifier Azimuth and Computer);
SA-71-EB1 (Command Limit and Amplifier used in the BAC1-11 Amplifier Azimuth and Computer and the VC10 Lateral Amplifier and Flight Steering Computer);
SA-88-EA1;
SA-245-A3; (Filter Band Pass Amplifier from the BAC1-11 Amplifier Azimuth and Computer)
SA-256-EA1;
SA-71-EB1 (Command Limit and Amplifier used in the BAC1-11 Amplifier Azimuth and Computer Lateral Amplifier and the VC10 Lateral Amplifier and Computer)
SA-32-EB4 (This is the Amplifier Electronic Control used in the VC10 Lateral Amplifier and Computer and the BAC1-11 Amplifier Azimuth and Computer).
The name of some of these cards and which units they were used in is not always known.

From the early days of the company it had been hoped to enter the civil aircraft flight control field, in order to reduce dependence on military projects. The late 1950s was a time of significant change in the automatic flight control field. Elliott made a major contribution to this evolution by the design and development of actuation systems which integrated the electronic control input with the hydraulics of the main flying control power actuator.

The opportunity to take this step came in the late 1950’s with the planning of the Vickers 'VC 10' for which Elliott Brothers secured an order to provide a complete automatic flight control system. This led to considerable shared responsibility with the airframe designs of the Vickers VC 10, where the main control surfaces were split into several separate units. From the outset, the 'VC 10' system was planned to make provision for fully automatic landing of the aircraft. For certification ever to be possible an extremely high standard of reliability was essential, and even in the case of failure of the equipment it was a requirement that the aircraft must not be subjected to violent manoeuvres. After a detailed study of possible alternatives, the solution chosen was to duplicate the whole of the major system, one half to be operative while the other was to be 'standing by', with a changeover mechanism of the utmost reliability to permit instant switching from one to another. By 1960 the basic development was substantially complete and the requirements for automatic landing were being explored in detail with full 'autoland' capability available from January 1963. Successful development of the 'VC 10' system resulted in the opportunity to supply broadly similar equipment for the British Aircraft Corporation 'BAC 111', which has been produced in substantial numbers. The automatic flight control system of the Standard and Super VC10 was designed to be capable of development to full blind landing. To meet this requirement the system had to be capable of failure survival and this includes associated services such as power supplies and flying controls. The method of autopilot failure survival chosen was to provide two monitored systems which are fail soft, i.e. there is negligible aircraft disturbance after a failure. Only one autopilot is used to fly the aircraft, and the two systems, including power supplies, are completely independent. Each autopilot has a comparison monitor which detects faults and, in flight, will disconnect the system if these faults are likely to lead to dangerous conditions. For autoflare the system provides for automatic changeover to the second monitored autopilot system, in the event of fault in the first. Under these conditions the second autopilot is primed and ready to take over. If for any reason the monitoring system fails to prevent an autopilot runaway, the control movement is limited to a safe amount by the yielding of a torque-limiting spring. Many of the needed components were already present in the autopilot fit on the Standard VC10s, to achieve the autoland capacity the system on the Super received some additional items. The system, supplied by Elliott Brothers (London) Ltd, was based largely on components of the well-proved Bendix PB-20 autopilot, made under licence by Elliott, and interchangeable with American built components as installed in Boeing 707s. However, the system as a whole i.e., the dual autopilot concept was novel, and designed entirely by Elliott.           

A comprehensive description of the VC10 systems will be found at this VC10 website.
 
 

The BAC 1-11 AFCS, like that in the VC10, was based on the well proven Bendix PB-20 Autopilot and was designated the Series 2000 AFCS. New features over the PB-20 system include separate pitch and azimuth control computers, a modular Air Data Sensor and a range of units specifically designed for autoflare and autolanding.

Each unit in the BAC 1-11 AFCS is built to a common configuration with circuit modules arranged in stacks either side of the chassis. The stacks are connected by plugs to a mother board and are physically separated into ‘command’ and ‘monitor’ functions to preclude common failures. The computers are entirely solid state and there is a high degree of built-in-test. Self-monitoring techniques and multiple channel redundancy are used to give automatic failure survival in approach and cruise flight.

These circuit modules from the VC-10 computer are typical of construction techniques of the early 1960’s to early 1970’s. The technique of building up electronic and electro-mechanical units in plug-in card modules was a feature of the Bendix PB-20 system Autopilot upon which the Elliott system was based. A number of these cards and modules are common to a range of boxes. However, Elliotts also designed many of their own cards and overall the Autopilot has some 25 different types.  

Click to enlarge Click to enlarge