Rochester Avionic Archives

EMAC Circuit Module

EMAC Circuit Module - Photo 1
EMAC Circuit Module - Photo 2
EMAC Circuit Module - Photo 3
Catalogue NumberC0934
Sub-categories
Year of manufacture1966
LocationRack RAA03 [Main Store]
Object TypeModule/Sub-Assembly/Component
DivisionMilitary Aircraft Controls [MACD]
Platform
Manufacturer
Part No6723-00347
Serial No0016
Dimensions
Width (mm):167
Height (mm):227
Depth (mm):14
Weight (g):364
Inscription(s)A5 MRB 0465 Des 4L95072-105 Part No 6723-00347 Ser No 0016 DSGN COD K0656
Notes This is a Circuit Board Used on C-5A EMAC Pt No. 59-002-03. The design is marked 4L97502-105 and it was made in 1966.

The Lockheed C-5 Galaxy is a large military transport aircraft built by Lockheed. It provides the United States Air Force (USAF) with a heavy intercontinental-range strategic airlift capability. The C-5 Galaxy has been operated by USAF since 1969.

The C-5A and C-5B were fitted with an Energy Management Analog Computer (EMAC).

Three sources of energy are available to generate aerodynamic forces and thus manoeuvre the airplane: kinetic, which increases with increasing airspeed; potential, which is proportional to altitude; and chemical, which is from the fuel in the airplane's tanks.

The airplane is continuously expending energy in flight because of drag. During manoeuvring, the three types of energy can be traded, or exchanged, usually at the cost of additional drag. This process of consciously manipulating the energy state of the airplane is referred to as energy management.

The objective of manoeuvring the airplane is to manage energy so that the three types of energy stay between limits.

The pilot does not directly control the energy but controls the direction and magnitude of the forces acting on the airplane. These forces result in accelerations applied to the airplane. The result of these accelerations is a change in the orientation of the airplane and a change in the direction, magnitude, or both, of the flight path vector. Ultimately, velocity and altitude define the energy state.

This process of controlling forces to change accelerations and produce a new energy state takes time especially in an aircraft as large as the C-5 so a computerised system was devised to take control and optimise the control. Graham Holloway (Elliotts 1961 [Apprentice Technician] –  ?1978 [Project Leader])recalls that this used a technique known as “IMPACT”, integrated modular pulse analogue computing technique, basically the controlled chopping of reference waveforms (sine, cos ramp and triangular) to perform multiplication, division and trig functions. FARL did some work on systems for torpedoes, and the C5 Galaxy crosswind steering system with MACD.

Subscribe to our Newsletter

Are you interested in receiving our newsletter?

Subscribe
About Rochester Avionic Archives

Our collection exceeds 1850 pieces of equipment from HUDs to Air Data Computers, and we also have a substantial archive of Brochures, Company Newspapers, Films, Videos and photographs.

Keep in Touch
    Rochester Avionic Archives
    Website design & build byHeliocentrix
    Copyright © 2023 Rochester Avionic Archives

    BAE Systems will collect and process information about you that may be subject to data protection laws. For more information about how we use and disclose your personal information, how we protect your information, our legal basis to use your information, your rights and who you can contact, please refer to the relevant sections of our Privacy Notice at www.baesystems.com/en/privacy